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SET  THEORY 
 

 

 

 

 

1.1 Sets 

 

1.1.1   Basics of Sets 

 

Definition 1.1.1   A set is a collection of objects called the members 

(or elements or points) of the set. If X is a set and x is an element of X, we 

write 

 

x∈ X. 

 

If X is a set and x is not an element of X, we write 

 

  x∉ X. ⋄ 

 

Sometimes it is possible to specify a set by listing its members 

between curly brackets. For example, {1,2, … , 𝑛, … } is the set of all positive 

integers, 1 ∈ {1,2}, 3∉  {1,2}. 

 

Remark 1.1.1   Notice that {𝑎, 𝑏, 𝑐} = {𝑐, 𝑎, 𝑏}. ⋄ 

 

Using the elementary logic, we say that, if x is an object and X is a set, 
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then one of the two properties 

 

x∈ X 

x∉ X 

 

is true and the other is false.  

 

Definition 1.1.2   Let I be a set. If to each 𝑖 ∈ 𝐼 there is assigned a 

set 𝐴𝑖, then the set {𝐴𝑖: 𝑖 ∈ 𝐼} is called an indexed family of sets. In this case, 

I is called the index set for the family and the elements of I are called indices. 

⋄ 

 

Definition 1.1.3   Let P and Q be any two property. We say that P 

implies Q and we write 

 

P⇒ Q 

 

if Q is true every time P is true. We say that P and Q are equivalent and we 

write 

P⇔ Q 

if it is simultaneously 

P ⇒ Q 

  Q ⇒ P. ⋄ 

 

If x and y are the same object, we say that x and y are equal and we 

write 

x=y. 

  

If x and y are distinct objects, we say that x and y are distinct and we write 

 

x≠ y. 

 

Definition 1.1.4   Let A and B be any two sets. If each member of A 
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if also member of B, we say that A is a subset (or a part) of B (or that A is 

contained in B) or that B contains A and we write 

 

𝐴 ⊆ 𝐵  

 

or 

   𝐵 ⊇ 𝐴. ⋄ 

 

 Definition 1.1.5   Let A and B be any two sets. If A and B have 

precisely the same members, we say that A is equal to B and we write 

 

   𝐴 = 𝐵. ⋄  

 

Obviously 

(𝐴 = 𝐵) ⇔ (𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴). 

 

Definition 1.1.6   If 𝐴 ⊆ 𝐵  and 𝐴 ≠ 𝐵   we say that A is a proper 

subset of B and we write 𝐴 ⊂ 𝐵 or 𝐵 ⊃ 𝐴. ⋄ 

 

Definition 1.1.7   The set containing no elements at all is called the 

void set (or empty set) and is denoted by the symbol ∅. ⋄ 

 

The set ∅ is clearly a subset of every set. 

 

 

 

1.1.2   Operations on Sets 

 

Definition 1.1.8   Let A and B be given sets. We call union of A and 

B, and denote by 𝐴 ∪ 𝐵, the set consisting of all elements which belong to 

at least one of the sets A and B. In symbols 

 

𝐴 ∪ 𝐵 = {𝑥: 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵}. ⋄ 
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For example, we have {1,2} ∪ {2,3} = {1,2,3}. 

 

Definition 1.1.9   We call union of the indexed family of sets 

{𝐴𝑖: 𝑖 ∈ 𝐼}, and denote by ∪𝑖∈𝐼 𝐴𝑖, the set consisting of all elements which 

belong to at least one of the sets 𝐴𝑖. ⋄ 

 

Definition 1.1.10   Let A and B be given sets. We call intersection of 

A and B, and denote by 𝐴 ∩ 𝐵 , the set consisting of all elements which 

belong to both A and B. In symbols 

 

𝐴 ∩ 𝐵 = {𝑥: 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵}. ⋄ 

 

For example, we have {1,2} ∪ {1,2,3} = {1,2}. 

 

Definition 1.1.11   We call intersection of the indexed family of sets 

{𝐴𝑖: 𝑖 ∈ 𝐼}, and denote by ∩𝑖∈𝐼 𝐴𝑖, the set consisting of all elements which 

belong to every one of the sets 𝐴𝑖. ⋄ 

 

 From the above definitions it immediately follows that the operations 

∪ and ∩ are commutative, i.e., that 

 

𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴 

𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴, 

 

associative, i.e., that 

 

(𝐴 ∪ 𝐵) ∪ 𝐶 = 𝐴 ∪ (𝐵 ∪ 𝐶) 

(𝐴 ∩ 𝐵) ∩ 𝐶 = 𝐴 ∩ (𝐵 ∩ 𝐶) 

 

and obey the following distributive laws 

 

(𝐴 ∪ 𝐵) ∩ 𝐶 = (𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶) 
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(𝐴 ∩ 𝐵) ∪ 𝐶 = (𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶). 

 

Definition 1.1.12   Let A and B be given sets. We say that A and B are 

disjoint if they have no elements in common, i.e., if  

 

𝐴 ∩ 𝐵 = ∅.  ⋄ 

 

Definition 1.1.13   Let ℱ  be a family of sets such that 𝐴 ∩ 𝐵 = ∅ 

for every pair of sets 𝐴, 𝐵 in ℱ. Then the sets in ℱ are said to be pairwise 

disjoint. ⋄ 

 

 Definition 1.1.14   Let X be given set, A a subset of X. We call 

complement of A and denote by 𝐴𝑐 (or by 𝑋 − 𝐴) the set of all elements of 

X which do not belong to A. ⋄ 

 

Remark 1.1.2   Let X be a given set, {𝐴𝑖: 𝑖 ∈ 𝐼} an indexed family of 

subset of X. We easily verify that ∪𝑖∈𝐼 𝐴𝑖 and ∩𝑖∈𝐼 𝐴𝑖 are both subset of X. 

⋄ 

 

Remark 1.1.3   Let A, B, C be any sets. We easily verify that  

 

𝐴 ∪ 𝐴 = 𝐴 

𝐴 ∩ 𝐴 = 𝐴 

𝐴 ∪ ∅ = 𝐴 

𝐴 ∩ ∅ = ∅ 

𝐴 ⊂ 𝐴 ∪ 𝐵 

  𝐴 ∩ 𝐵 ⊂ 𝐴. ⋄  

 

Theorem 1.1.1 [De Morgan’s Laws]  Let X be given set, {𝐴𝑖: 𝑖 ∈ 𝐼} 

an indexed family of subset of X. It results 

 

(1.1.1)                                             (∪𝑖∈𝐼 𝐴𝑖)𝑐 =∩𝑖∈𝐼 (𝐴𝑖)𝑐  

(1.1.2)                                             (∩𝑖∈𝐼 𝐴𝑖)𝑐 =∪𝑖∈𝐼 (𝐴𝑖)𝑐.  



6 
SET THEORY 

 

 

Proof. To prove (1.1.1), suppose 𝑥 ∈ (∪𝑖∈𝐼 𝐴𝑖)𝑐, i.e., 𝑥 does not belong to 

any of the sets 𝐴𝑖 .  It follows that 𝑥  belongs to each of the complements 

(𝐴𝑖)𝑐 and hence 𝑥 ∈∩𝑖∈𝐼 (𝐴𝑖)𝑐 . Thus (∪𝑖∈𝐼 𝐴𝑖)𝑐 ⊆ ∩𝑖∈𝐼 (𝐴𝑖)𝑐 . 

Conversely, suppose 𝑥 ∈∩𝑖∈𝐼 (𝐴𝑖)𝑐 , so that 𝑥  belongs to every set (𝐴𝑖)𝑐 , 

i.e., 𝑥 does not belong to any of the sets 𝐴𝑖. Hence 𝑥 does not belong to the 

union ∪𝑖∈𝐼 𝐴𝑖, and then 𝑥 ∈ (∪𝑖∈𝐼 𝐴𝑖)𝑐. Thus ∩𝑖∈𝐼 (𝐴𝑖)𝑐 ⊆ (∪𝑖∈𝐼 𝐴𝑖)𝑐 . 

This proves (1.1.1). 

The (1.1.2) can be proved similarly. ⋄ 

 

Definition 1.1.15   Let B be a given set, A be a subset of B. We call 

cover of A any indexed family {𝐴𝑖: 𝑖 ∈ 𝐼} of subset of B such that 

 

     𝐴 ⊆ ∪𝑖∈𝐼 𝐴𝑖  .  ⋄ 

 

Definition 1.1.16   Let X be a given set. Any family {𝑋𝑖: 𝑖 ∈ 𝐼}  of 

pairwise disjoint subset of X such that 

 

 ∪𝑖∈𝐼 𝑋𝑖 = 𝑋 

 

is called a partition (or decomposition) of X .  ⋄ 

 

Definition 1.1.17   Let X and Y be given sets. We call Cartesian1.1.1 

product of X and Y the set 1.1.2  

 

𝑋 × 𝑌 = {(𝑥, 𝑦): 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌}.  

 

Every element (𝑥, 𝑦) of 𝑋 × 𝑌 is called ordered pair, where x is called the 

first coordinate of (𝑥, 𝑦) and y is called the second coordinate of (𝑥, 𝑦).⋄ 

 

Remark 1.1.4   If (𝑥, 𝑦) and (𝑎, 𝑏) are two ordered pairs, we write 
                                                 
1.1.1 To honor René Descartes, La Haye (French) 1506 -.Stockholm 1650. 
1.1.2 The symbol “ : “ means “such that“. 
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(𝑥, 𝑦) = (𝑎, 𝑏) if and only if 𝑥 = 𝑎 and 𝑦 = 𝑏. Thus (1,5) ≠ (5,1) while 

{1,5} = {5,1}. ⋄ 

 

Definition 1.1.18   Let n be a positive integer number and 𝑋1, … , 𝑋𝑛 

be n sets. We call Cartesian product of 𝑋1, … , 𝑋𝑛 the set 

 

𝑋1 × … × 𝑋𝑛 = {𝑥 = (𝑥1, … , 𝑥𝑛): 𝑥𝑖 ∈ 𝑋𝑖   ∀𝑖 ∈ {1, … , 𝑛}}. 

 

We call, ∀𝑖 ∈ {1, … , 𝑛}, the point 𝑥𝑖 ∈ 𝑋𝑖 the ith coordinate of the ordered 

n tuple (𝑥1, … , 𝑥𝑛) ∈ 𝑋1 × … × 𝑋𝑛. ⋄ 

 

 

 

1.1.3   Relations 

 

 Definition 1.1.19   Let X be a set. Any subset R of 𝑋 × 𝑋 is called a 

(binary) relation on X. If (𝑥, 𝑦) ∈ 𝑅 we say that 𝑅 is verified by the ordered 

pair (𝑥, 𝑦) and we write 

 

𝑥 𝑅 𝑦 .  ⋄ 

 

Definition 1.1.20   Let X be a set, 𝑅  be a relation on X. We call 

domain of 𝑅 the set 1.1.3 

 

dom 𝑅 = {𝑥 ∈ 𝑋 ∶  ∃(𝑥, 𝑦) ∈ 𝑅}.   

 

We call range of 𝑅 the set  

 

rng 𝑅 = {𝑦 ∈ 𝑋 ∶  ∃(𝑥, 𝑦) ∈ 𝑅} .  ⋄ 

 

 

                                                 
1.1.3 The symbol "∃" means “it exists”. 
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Definition 1.1.21   Let 𝑅  be a relation on X. We say that 𝑅  is 

reflexive if ∀𝑥 ∈ dom 𝑅  

 

(1.1.3)                                                      𝑥 𝑅 𝑥, 

 

symmetric if  

 

(1.1.4)                                           𝑥 𝑅 𝑦 ⇒  𝑦 𝑅 𝑥, 

 

antisymmetric if 

 

(1.1.5)                              (𝑥 𝑅 𝑦   and  𝑦 𝑅 𝑥 ) ⇒  (𝑥 = 𝑦), 

 

transitive if 

 

(1.1.6)                              (𝑥 𝑅 𝑦  and  𝑦 𝑅 𝑧)  ⇒  (𝑥 𝑅 𝑧) .  ⋄ 

 

Definition 1.1.22   Let 𝑅 be a relation on X such that dom 𝑅 = 𝑋. 

We say that 𝑅 is an equivalence relation on X if it is reflexive, symmetric 

and transitive.  ⋄ 

 

If 𝑅  is an equivalence relation on X, the element 𝑥 𝑅 𝑦  is often 

denoted 𝑥 ≡ 𝑦 and we say that x is equivalent to y by 𝑅. 

 

Definition 1.1.23   Let 𝑅 be an equivalence relation on X and 𝑥 ∈ 𝑋. 

The set 

𝑅𝑥 =  {𝑦 ∈ 𝑋 ∶ 𝑦 ≡ 𝑥} 

 

is called equivalence class of X containing x. ⋄ 

 

We also say that 𝑅𝑥  is represented by any one of its elements. 

Besides, if 𝑦 ∈ 𝑅𝑥, 𝑦 is said a representative of 𝑅𝑥. It is easy to check that 

the family  
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(1.1.7)                                      
𝑋

𝑅𝑥
= {𝑅𝑥 ∶ 𝑥 ∈ 𝑋} 

 

of all such equivalence classes is a family of nonvoid pairwise disjoint sets 

and its union is X and then is a partition of X.  

 

Definition 1.1.24   The partition (1.1.7) of X is called quotient set of 

X .  ⋄ 

 

Definition 1.1.25   Let 𝑅 be a relation on X such that 𝑑𝑜𝑚 𝑅 = 𝑋. 

We say that 𝑅 is a partial order on X if it is reflexive, antisymmetric and 

transitive. If 𝑅  is a partial order on X, we usually write 𝑎 ≤ 𝑏  or 𝑏 ≥ 𝑎 

instead 𝑎 𝑅 𝑏.  ⋄ 

 

Definition 1.1.26   The notation 𝑎 < 𝑏  (or 𝑏 > 𝑎 ) indicates that 

𝑎 ≤ 𝑏 and 𝑎 ≠ 𝑏. ⋄ 

 

Definition 1.1.27   If X is a set provided with a partial order, we say 

that X is a partially ordered set. ⋄  

 

Definition 1.1.28   We say that X is an ordered set (or a totally 

ordered set) if  

 

(1.1.8)              𝑋 is a partially ordered set, 

(1.1.9)              ∀𝑥, 𝑦, 𝑧 ∈ 𝑋 one and only one of the statements 

 

𝑥 < 𝑦,         𝑥 = 𝑦,        𝑦 < 𝑥 

 

            is true (trichotomy property). ⋄ 

 

Definition 1.1.29   Let X be an ordered set, and 𝑌 ⊆ 𝑋. If there exists 

a 𝛽 ∈ 𝑋 such that 𝑥 ≤ 𝑦 for every 𝑥 ∈ 𝑌, we say that 𝑌 is bounded above, 
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and call 𝛽 an upper bound for 𝑌. ⋄ 

 

Definition 1.1.30   Let X be an ordered set, and 𝑌 ⊆ 𝑋. If there exists 

an 𝛼 ∈ 𝑋  such that 𝛼 ≤ 𝑥  for every 𝑥 ∈ 𝑌 , we say that 𝑌  is bounded 

below, and call 𝛼 a lower bound for 𝑌. ⋄ 

 

Definition 1.1.31   Let X be an ordered set, and 𝑌 ⊆ 𝑋. If 𝑌 has both 

an upper bound and a lower bound, then we say that 𝑌 is bounded.⋄ 

 

Definition 1.1.32   Let X be an ordered set, and 𝑌 ⊆ 𝑋. By a 

maximum of 𝑌 we mean an element of 𝑌, denoted max 𝑌, such that  max 𝑌 

is an upper bound for 𝑌. ⋄ 

 

Remark   1.1.5   Let X be an ordered set, and 𝑌 ⊆ 𝑋. It is clear that 

𝑌 can have at most one maximum. ⋄ 

 

Definition 1.1.33   Let X be an ordered set, and 𝑌 ⊆ 𝑋. By a 

minimum of 𝑌 we mean an element of 𝑌, denoted min 𝑌, such that  min 𝑌 

is a lower bound for 𝑌. ⋄ 

 

Remark   1.1.6   Let X be an ordered set, and 𝑌 ⊆ 𝑋. It is clear that 

𝑌 can have at most one minimum. ⋄ 

 

Definition 1.1.34   Let X be an ordered set, 𝑌 ⊆ 𝑋, 𝑌 ≠ ∅. We say 

that 𝑋 has the least-upper-bound property if there exists an element of 𝑋, 

called supremum (or least upper bound) of 𝑌, and denoted 

 

sup 𝑌, 

such that 

 

(1.1.10)    sup 𝑌 is an upper bound for 𝑌, 

(1.1.11)    if 𝛾 is any upper bound for 𝑌, then sup 𝑌 ≤ 𝛾. ⋄ 
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Remark 1.1.7   Let X be an ordered set, and 𝑌 ⊆ 𝑋.  We underline 

that if 𝛼 = sup 𝑌  exists, then 𝛼  may or may not be a member of 𝑌 . 

Furthermore, we underline that, if 𝑌 has the least-upper-bound property, 

denoting 𝐵 the set of the upper bounds of 𝑌, it results 

 

sup 𝑌 = min 𝐵. ⋄ 

 

Remark   1.1.8   Let X be an ordered set, and 𝑌 ⊆ 𝑋. It is clear that 

𝑌 can have at most one supremum. ⋄ 

 

Definition 1.1.35   Let X be an ordered set, 𝑌 ⊆ 𝑋, 𝑌 ≠ ∅.  We say 

that 𝑋 has the greatest-lower-bound property if there exists an element of 

𝑋, called infimum (or greatest lower bound) of 𝑌, and denoted 

 

inf 𝑌, 

such that 

 

(1.1.12)    inf 𝑌 is a lower bound for 𝑌, 

(1.1.13)    if 𝛿 is a lower bound for 𝑌, then inf 𝑌 ≥ 𝛿. ⋄ 

 

Remark 1.1.9   Let X be an ordered set, and 𝑌 ⊆ 𝑋. We underline that 

if 𝛼 = inf 𝑌 exists, then 𝛼 may or may not be a member of 𝑌. Furthermore, 

we underline that, if 𝑌 has the greatest-lower-bound property, denoting 𝐴 

the set of the lower bounds of 𝑌, it results 

 

inf 𝑌 = max 𝐴. ⋄ 

 

Remark   1.1.10   Let X be an ordered set, and 𝑌 ⊆ 𝑋. It is clear that 

𝑌 can have at most one infimum. ⋄ 

 

Theorem 1.1.2   Suppose 𝑋 is an ordered set with the least-upper-

bound property, 𝑌 ⊆ 𝑋, Y is not empty, and Y is bounded below. Let A be 

the set of all lower bounds of Y. Then 
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𝛼 = max 𝐴 

 

exists in X, and 𝛼 = inf 𝑌. 

 

Proof.   Obviously 𝐴 ⊆ 𝑋. Moreover, since Y is bounded below, A is not 

empty. Since 𝐴 = {𝑦 ∈ 𝑋 ∶ 𝑦 ≤ 𝑥    ∀𝑥 ∈ 𝑌} , every 𝑥 ∈ 𝑌  is an upper 

bound of 𝐴, hence 𝐴 is bounded above. By hypothesis, 𝑋 has the least-

upper-bound property. Hence ∃𝛼 ∈ 𝑋: 𝛼 = sup 𝐴. 

Since 𝛼 = sup 𝐴, we have that 𝛼 is greater or equal than every upper bound 

of 𝐴. So, if 𝜇 < 𝛼 then 𝜇 is not an upper bound of 𝐴, hence 𝜇 ∉ 𝑌. In fact, 

we have already seen that every member of 𝑌 is an upper bound of 𝐴. It 

follows that, for every 𝑦 ∈ 𝑌, we have 𝛼 ≤ 𝑦 . Thus 𝛼 ∈ 𝐴.  

Hence 𝛼 = max 𝐴, hence 𝛼 = inf 𝑌.  ⋄   

 

Remark 1.1.11 Theorem 1.1.2 show that that every ordered set with 

the least-upper-bound property also has the greatest-lower-bound property.⋄ 

 

 

 

1.1.4   Functions 

  

 Definition 1.1.36   Let X and Y be sets, 𝑋′ be a subset of X. A rule f 

associating a unique  𝑦 ∈ 𝑌  with each 𝑥 ∈ 𝑋′  is called a (single-valued) 

function from 𝑋′ into Y. The set 𝑋′ is called the domain (of definition) of f 

and is denoted by dom f. The unique element y of Y (associated by f with the 

element x of 𝑋′), is called the value of f at x (or the image of x under f) and 

denoted by 𝑓(𝑥). We say that f maps X into Y and we write 

 

𝑓: 𝑋 → 𝑌 

 

or 
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𝑓: 𝑥 ∈ 𝑋′ ⊆ 𝑋 → 𝑓(𝑥) ∈ 𝑌. 

 

The set {𝑓(𝑥) ∈ 𝑌: 𝑥 ∈ 𝑋′} is called the range of f (or image of 𝑋′) and is 

denoted 𝑓(𝑋′) or rng f . ⋄ 

 

Remark 1.1.12   Obviously 𝑓(𝑋′) ⊆ 𝑌 and in general an element of 

𝑓(𝑋′) is the value of f at several elements of 𝑋′. ⋄ 

 

Definition 1.1.37   If dom 𝑓 = 𝑋 and 𝑓(𝑋′) = 𝑌 we say that f  is a 

function from X onto Y. ⋄ 

 

Remark 1.1.13   A function is also called single-valued relation or 

mapping or transformation or operation or correspondence or application.⋄ 

 

Definition 1.1.38   Let f  be a function that maps 𝑋′ ⊆ 𝑋 into Y. If 

 

∀𝑥, 𝑧 ∈ 𝑋′         𝑥 ≠ 𝑧 ⇒ 𝑓(𝑥) ≠ 𝑓(𝑧), 

 

we say that f is a reversible function. ⋄ 

 

Remark 1.1.14   Let  𝑓: 𝑋′ ⊆ 𝑋 → 𝑌  be any reversible function. 

Obviously ∀𝑦 ∈ rng𝑓  there exists one and only one 𝑥 ∈ 𝑋′  such that 

𝑓(𝑥) = 𝑦. ⋄ 

 

Definition 1.1.39   Let f  be a function that maps 𝑋′ ⊆ 𝑋 into 𝑌. If 

f  is a reversible function, the (single-valued) function 𝑓−1 

 

∀𝑦 ∈ rng 𝑓 → the unique 𝑥 ∈ 𝑋′ such that 𝑓(𝑥) = 𝑦 

 

is called the inverse of f . ⋄  

 

Remark  1.1.15  If 𝑓: 𝑋′ ⊆ 𝑋 → 𝑌 is a reversible function, obviously 

dom𝑓−1 = rng𝑓 and rng𝑓−1 = dom𝑓. ⋄     
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Definition 1.1.40   Let f  be a function that maps X onto Y. If f is a 

reversible function, we say that f is a one to one (or biunique) 

correspondence from X onto Y. ⋄ 

 

Thus, to say that f is a one to one (or biunique) correspondence from 

X onto Y simply means that each element of Y is the correspondent (by f ) of 

one and only one element of X and each element of X is the correspondent 

(by 𝑓−1) of one and only one element of Y. 

 

Definition 1.1.41   If 𝑓: 𝑋 → 𝑌 is a function and 𝐴 ⊂ 𝑋, we define 

the restriction of 𝑓 to 𝐴 to be the function 𝑓𝐴 ∶ 𝐴 → 𝑌 such that 

 

𝑥 ∈ 𝐴 →  𝑓𝐴(𝑥) = 𝑓(𝑥) ∈ 𝑌.  ⋄ 

 

Remark  1.1.16   Usually the restriction 𝑓𝐴 of 𝑓 to 𝐴 is denoted by 

the same symbol 𝑓 of the function. ⋄     

 

Definition 1.1.42   If 𝑓: 𝑋 → 𝑌 is a function and 𝑋 ⊂ 𝐵, we define 

the extension of 𝑓 to 𝐵 to be the function 𝑓𝐵 ∶ 𝐵 → 𝑌 such that 

 

𝑥 ∈ 𝑋 →  𝑓𝐵(𝑥) = 𝑓(𝑥) ∈ 𝑌.  ⋄ 

 

Remark 1.1.17   Usually the extension 𝑓𝐵 of 𝑓 to 𝐵 is denoted by 

the same symbol 𝑓 of the function. ⋄     

 

Definition 1.1.43   Let 𝑓: 𝑋 → 𝑌  and 𝑔: 𝑌 → 𝑍  be any functions. 

We define the composite function 𝑔 ∘ 𝑓 to be the function 

  

𝑥 ∈ 𝑋 →  𝑔 ∘ 𝑓(𝑥) = 𝑔(𝑓(𝑥)) ∈ 𝑌.  ⋄ 

 

Definition 1.1.44   Let 𝑋 be any set and 𝐴 be any subset of 𝑋. The 

function 𝜒𝐴 with domain 𝑋 and range contained in {0,1} such that 
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𝜒𝐴(𝑥) = {
1    if    𝑥 ∈ 𝐴

       0   if   𝑥 ∈ 𝑋 − 𝐴,
 

 

is called the characteristic function of A. ⋄ 

 

Remark 1.1.18  The characteristic functions are very useful in the 

Mathematical Analysis. ⋄  

 

Definition 1.1.45   A sequence is a function having ℕ  1.1.4 as its 

domain. If x is a sequence, we will write 𝑥𝑛 instead of 𝑥(𝑛) for the value 

of x at n. The value 𝑥𝑛 is called the 𝑛𝑡ℎ term of the sequence. The sequence 

x whose 𝑛𝑡ℎ term is 𝑥𝑛 will be denoted by 

 

𝑥1, … , 𝑥𝑛, … 

 

or simply 

{𝑥𝑛}. 

 

If 𝑌 is a set and if 𝑥𝑛 ∈ 𝑌    ∀𝑛 ∈ ℕ, then {𝑥𝑛} is said to be a sequence in 

𝑌, or a sequence of elements of 𝑌. ⋄ 

 

Definition 1.1.46   Two sets 𝐴  and 𝐵  are said equivalent if there 

exists some one-to-one function from 𝐴 onto 𝐵. ⋄ 

 

Definition 1.1.47   A set 𝑋  is said finite if either 𝑋 = ∅  or else 

exists some 𝑛 ∈ ℕ such that 𝑋 is equivalent to {𝑗 ∈ ℕ ∶ 1 ≤ 𝑗 ≤ 𝑛}.  

All sets that are not finite are said to be infinite. 

A set equivalent to ℕ is said denumerable (or enumerable). 

A set that is either finite or denumerable is said to be countable. 

Any set that is not countable is called uncountable. ⋄ 

                                                 
1.1.4 We denote by ℕ the set of all positive integer numbers. 

 


