CHAPTER 1

SET THEORY'

1.1  Sets
1.1.1  Basics of Sets
Definition 1.1.1 A set is a collection of objects called the members
(or elements or points) of the set. If X is a set and x 1s an element of X, we
write
xX€eX.
If X'is a set and x is not an element of X, we write
xX&X. o
Sometimes it is possible to specify a set by listing its members
between curly brackets. For example, {1,2, ...,n, ...} is the set of all positive
integers, 1 € {1,2}, 3¢ {1,2}.

Remark 1.1.1 Notice that {a,b,c} = {c,a,b}. ¢

Using the elementary logic, we say that, if x is an object and X'is a set,
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then one of the two properties

xe€X
x&X

is true and the other is false.

Definition 1.1.2 Let I be a set. If to each i € I there is assigned a
set A;, thenthe set {A;:i € I} is called an indexed family of sets. In this case,

1 1s called the index set for the family and the elements of / are called indices.
0

Definition 1.1.3 Let P and Q be any two property. We say that P
implies Q and we write

P=0

if O is true every time P is true. We say that P and Q are equivalent and we
write

P&
if it 1s simultaneously

P=0

Q=P o

If x and y are the same object, we say that x and y are equal and we
write

X=y.
If x and y are distinct objects, we say that x and y are distinct and we write
XFE .

Definition 1.1.4 Let A and B be any two sets. If each member of 4



SETS

if also member of B, we say that A4 is a subset (or a part) of B (or that 4 is
contained in B) or that B contains A and we write

AcEB

or
B2A. ¢

Definition 1.1.5 Let A and B be any two sets. If 4 and B have
precisely the same members, we say that 4 1s equal to B and we write

A=B.»o

Obviously
(A=B)©(A<S B and B C A).

Definition 1.1.6 If AS B and A # B we say that 4 is a proper
subset of B and we write AC B or BD A. ¢

Definition 1.1.7 The set containing no elements at all is called the
void set (or empty set) and is denoted by the symbol @. o

The set @ is clearly a subset of every set.

1.1.2  Operations on Sets

Definition 1.1.8§ Let A and B be given sets. We call union of A4 and
B, and denote by A U B, the set consisting of all elements which belong to
at least one of the sets 4 and B. In symbols

AUB ={x:x EAorx €B}. o
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For example, we have {1,2} U {2,3} = {1,2,3}.

Definition 1.1.9 ~ We call union of the indexed family of sets
{A;:i € I}, and denote by U;¢; 4;, the set consisting of all elements which
belong to at least one of the sets A;. ¢

Definition 1.1.10  Let A and B be given sets. We call intersection of
A and B, and denote by A N B, the set consisting of all elements which
belong to both 4 and B. In symbols

ANB={x:x € Aand x € B}.
For example, we have {1,2} U {1,2,3} = {1,2}.
Definition 1.1.11  We call intersection of the indexed family of sets
{A;:i € I}, and denote by N;¢; 4;, the set consisting of all elements which

belong to every one of the sets A;. ¢

From the above definitions it immediately follows that the operations
U and N are commutative, 1.e., that

AUB=BUA
ANB=BnNA4,

associative, 1.e., that

(AUB)UC=AU(BUC(C)
ANnB)NC=An(BnC)

and obey the following distributive laws

(AuB)NC=(ANC)U(BNC)
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(AnB)uC=(AucC)n(BUCO).

Definition 1.1.12  Let A and B be given sets. We say that 4 and B are
disjoint if they have no elements in common, i.e., if

ANB=0@. ¢

Definition 1.1.13 Let F be a family of sets such that ANB =@

for every pair of sets A, B in F. Then the sets in F are said to be pairwise
disjoint. ¢

Definition 1.1.14 Let X be given set, A a subset of X. We call

complement of A and denote by A¢ (or by X — A) the set of all elements of
X which do not belong to 4. ¢

Remark 1.1.2 Let Xbe a given set, {A;:i € I} an indexed family of
subset of X. We easily verify that U;c; A; and N;¢; A; are both subset of X.

o

Remark 1.1.3  Let A, B, C be any sets. We easily verify that

AUA=A
ANA=A
Aupg=A
AN =20
AcCcAUB
ANBCA. o

Theorem 1.1.1 [De Morgan’s Laws] Let X be given set, {A;:i € I}
an indexed family of subset of X. It results

(1.1.1) (Vier AD° =Nier (A€
(1.1.2) (Nier A =V (4))°.
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Proof. To prove (1.1.1), suppose x € (U;¢; 4;)€, i.e., x does not belong to
any of the sets A;. It follows that x belongs to each of the complements
(4;)€ and hence x €N;¢; (4;)€. Thus (U;e; A;)€ S N (4))°C.
Conversely, suppose x €N;¢; (4;)€, so that x belongs to every set (4;)¢,
i.e., x does not belong to any of the sets A;. Hence x does not belong to the
union U;¢; 4;, and then x € (U;¢; A4;)€. Thus N;¢; (4;)€ S (Ui 4))°C.
This proves (1.1.1).

The (1.1.2) can be proved similarly. o

Definition 1.1.15 Let B be a given set, A be a subset of B. We call
cover of A any indexed family {A;:i € I} of subset of B such that

AEUiEIAi. o

Definition 1.1.16 Let X be a given set. Any family {X;:i € I} of
pairwise disjoint subset of X such that

Uier Xi = X
is called a partition (or decomposition) of X . ¢

Definition 1.1.17 Let X and Y be given sets. We call Cartesian’'!
product of X and Y the set 112

XXY={(x,y):x€eX,yeY}]

Every element (x,y) of X XY is called ordered pair, where x is called the
first coordinate of (x,y) and y is called the second coordinate of (x,y).o

Remark 1.1.4 1f (x,y) and (a, b) are two ordered pairs, we write

111 To honor René Descartes, La Haye (French) 1506 -.Stockholm 1650.
112 The symbol ** : “ means “such that*.
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(x,y) = (a,b) if and only if x = a and y = b. Thus (1,5) # (5,1) while
{1,5} = {5,1}. ¢

Definition 1.1.18 Let n be a positive integer number and X, ..., X,
be n sets. We call Cartesian product of X3, ..., X,, the set

X, X..XX, = {x = (xq,...,Xp):x; EX; Vi €{1, ...,n}}.

We call, Vi € {1, ...,n}, the point x; € X; the ith coordinate of the ordered
ntuple (x1,...,xp) € Xy X .. X X, ¢

1.1.3 Relations

Definition 1.1.19 Let X be a set. Any subset R of X X X is called a
(binary) relation on X. If (x,y) € R wesay that R is verified by the ordered
pair (x,y) and we write

XRy. o

Definition 1.1.20 Let X be a set, R be a relation on X. We call
domain of R the set '3

domR={x€X: 3(x,y) € R}.
We call range of R the set

mgR={yeX: 3(x,y) ER}. ¢

113 The symbol "3" means “it exists”.
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Definition 1.1.21  Let R be a relation on X. We say that R is
reflexive if Vx € dom R

(1.1.3) X R x,
symmetric if
(1.1.4) XRy = yRzx,
antisymmetric if
(1.1.5) (xRy and yRx )= (x =),
transitive if
(1.1.6) (xRy and yRz) = (xRz). ¢
Definition 1.1.22 Let R be a relation on X such that dom R = X.
We say that R is an equivalence relation on X if it is reflexive, symmetric

and transitive. o

If R is an equivalence relation on X, the element x Ry is often
denoted x = y and we say that x is equivalent to y by R.

Definition 1.1.23  Let R be an equivalence relation on Xand x € X.
The set
R,={yeX:y=x}

is called equivalence class of X containing x. ¢
We also say that R, is represented by any one of its elements.

Besides, if y € R,y is said a representative of R,.. It is easy to check that
the family
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X
(1.1.7) —= (R i x €X]

of all such equivalence classes is a family of nonvoid pairwise disjoint sets
and its union is X and then is a partition of X.

Definition 1.1.24  The partition (1.1.7) of X is called quotient set of
X. o

Definition 1.1.25 Let R be a relation on X such that dom R = X.
We say that R is a partial order on X if it 1s reflexive, antisymmetric and
transitive. If R is a partial order on X, we usually write a < b or b = a
instead a R b. ¢

Definition 1.1.26  The notation a < b (or b > a) indicates that
a<band a+#b. o

Definition 1.1.27 If X is a set provided with a partial order, we say
that X is a partially ordered set. ¢

Definition 1.1.28 We say that X is an ordered set (or a totally
ordered set) if

(1.1.8) X is a partially ordered set,
(1.1.9) Vx,y,z € X one and only one of the statements

x <Yy, x=y, y<x
is true (trichotomy property). ©

Definition 1.1.29  Let X be an ordered set, and Y € X. If there exists
a f € X suchthat x <y forevery x € Y, we say that Y is bounded above,
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and call f an upper bound for Y. ¢

Definition 1.1.30 Let X'be an ordered set, and Y < X. If there exists
an « € X such that « < x for every x €Y, we say that Y is bounded
below, and call a a lower bound for Y. o

Definition 1.1.31 Let Xbe an ordered set,and Y € X. If Y has both
an upper bound and a lower bound, then we say that Y is bounded.¢

Definition 1.1.32  Let X be an ordered set, and Y € X. By a
maximum of Y we mean an element of Y, denoted max Y, such that maxY
1s an upper bound for Y. o

Remark 1.1.5 Let X be an ordered set, and Y € X. It is clear that
Y can have at most one maximum. ¢

Definition 1.1.33  Let X be an ordered set, and Y € X. By a
minimum of Y we mean an element of Y, denoted minY, such that minY
1s a lower bound for Y. o

Remark 1.1.6 Let X be an ordered set, and Y € X. It is clear that
Y can have at most one minimum. ¢

Definition 1.1.34 Let X be an ordered set, Y € X, Y # 0. We say
that X has the least-upper-bound property if there exists an element of X,
called supremum (or least upper bound) of Y, and denoted

supY,
such that

(1.1.10)  sup?Y is an upper bound for Y,
(1.1.11)  if y is any upper bound for Y, then supY < y. ¢
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Remark 1.1.7 Let X be an ordered set, and Y € X. We underline
that if @ =supY exists, then @ may or may not be a member of Y.
Furthermore, we underline that, if Y has the least-upper-bound property,
denoting B the set of the upper bounds of Y, it results

supY = minB. ¢

Remark 1.1.8 Let X be an ordered set, and Y € X. It is clear that
Y can have at most one supremum. o

Definition 1.1.35 Let X be an ordered set, Y € X, Y # @. We say
that X has the greatest-lower-bound property if there exists an element of
X, called infimum (or greatest lower bound) of Y, and denoted

infY,
such that

(1.1.12)  infY is a lower bound for Y,
(1.1.13)  if § is alower bound for Y, then infY = 6. ¢

Remark1.1.9 Let Xbe an ordered set, and Y < X. We underline that
if a =infY exists, then @ may or may not be a member of Y. Furthermore,
we underline that, if Y has the greatest-lower-bound property, denoting A
the set of the lower bounds of Y, it results

infY = max A. ¢

Remark 1.1.10 LetXbeanorderedset,and Y € X. Itis clear that
Y can have at most one infimum. ¢

Theorem 1.1.2  Suppose X is an ordered set with the least-upper-
bound property, Y € X, Y is not empty, and Y is bounded below. Let A be
the set of all lower bounds of Y. Then
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a = max 4
exists in X, and a = infY.

Proof. Obviously A € X. Moreover, since Y is bounded below, A is not
empty. Since A={yeX:y<x Vx€eY}, every x €Y is an upper
bound of A, hence A is bounded above. By hypothesis, X has the least-
upper-bound property. Hence Ja € X: a@ = sup A.

Since a = sup A, we have that « is greater or equal than every upper bound
of A.So, if u < a then u isnotan upper bound of A, hence u € Y. Infact,
we have already seen that every member of Y is an upper bound of A. It
follows that, for every y € Y, we have @ < y . Thus a € A.

Hence @ = max 4, hence a = infY. ¢

Remark 1.1.11 Theorem 1.1.2 show that that every ordered set with
the least-upper-bound property also has the greatest-lower-bound property. ¢

1.1.4 Functions

Definition 1.1.36 Let X and Y be sets, X' be a subset of X. A rule f
associating a unique y € Y with each x € X' is called a (single-valued)
function from X' into Y. The set X' is called the domain (of definition) of f
and 1s denoted by dom /. The unique element y of Y (associated by f with the
element x of X"), is called the value of f at x (or the image of x under f) and
denoted by f(x). We say that f maps X into Y and we write

f:X-Y

or
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fixeX' cX-f(x)eY.

The set {f(x) € Y:x € X'} is called the range of f (or image of X') and is
denoted f(X") orrmg/f. ¢

Remark 1.1.12  Obviously f(X') €Y and in general an element of
f(X") is the value of fat several elements of X'. ¢

Definition 1.1.37 1f dom f = X and f(X') =Y wesaythatf isa
function from X onto Y. o

Remark 1.1.13 A function is also called single-valued relation or
mapping or transformation or operation or correspondence or application. ¢

Definition 1.1.38 Letf be a function that maps X' € X into Y. If
Vx,z€ X' x#z=f(x)# f(2),
we say that fis a reversible function. ¢

Remark 1.1.14 Let f:X € X —Y be any reversible function.
Obviously Vy € rngf there exists one and only one x € X' such that

fx)=y. o

Definition 1.1.39  Letf be a function that maps X' € X into Y. If
f is areversible function, the (single-valued) function f~?!

Vy € rng f — the unique x € X' such that f(x) =y
is called the inverse of 1. ¢

Remark 1.1.15 1ff:X' € X - Y isareversible function, obviously
domf~! = rngf and rngf~! = domf. o
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Definition 1.1.40 Let f be a function that maps X onto Y. If fis a
reversible function, we say that f is a ome fto one (or biunique)
correspondence from X onto Y. ¢

Thus, to say that f'is a one to one (or biunique) correspondence from
X onto Y simply means that each element of Y is the correspondent (by /) of
one and only one element of X and each element of X is the correspondent
(by f~1) of one and only one element of Y.

Definition 1.1.41 1f f:X - Y is a function and A C X, we define
the restriction of f to A to be the function f, : A — Y such that

XEA - frx)=f(x)€eY. o

Remark 1.1.16 Usually the restriction f4 of f to A is denoted by
the same symbol f of the function. ¢

Definition 1.1.42 1f f:X - Y is a function and X < B, we define
the extension of f to B to be the function fz : B = Y such that

x€EX = fzg(x)=f(x)€eY. o

Remark 1.1.17 Usually the extension fz of f to B is denoted by
the same symbol f of the function. ¢

Definition 1.1.43 Let f:X ->Y and g:Y — Z be any functions.
We define the composite function g o f to be the function

X€EX -5 gof(X)=g(f(x))€EY. o

Definition 1.1.44 Let X be any set and A be any subset of X. The
function y, with domain X and range contained in {0,1} such that
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(x)_{ 1 if xeA
XaX)=1 0 if xeX -4,

is called the characteristic function of A. ¢

Remark 1.1.18 The characteristic functions are very useful in the
Mathematical Analysis. o

Definition 1.1.45 A sequence is a function having N 14 as its
domain. If x is a sequence, we will write x,, instead of x(n) for the value
of x at n. The value x,, is called the n* term of the sequence. The sequence
x whose nt" termis x,, will be denoted by

X1y eeey Xppy oo

or simply

{xn}.

If Yisasetandif x,, EY Vn €N, then {x,,} is said to be a sequence in
Y, or a sequence of elements of Y. ¢

Definition 1.1.46 Two sets A and B are said equivalent if there
exists some one-to-one function from A onto B. ¢

Definition 1.1.47 A set X is said finite if either X = @ or else
exists some n € N such that X is equivalentto {j E N: 1 <j < n}.
All sets that are not finite are said to be infinite.
A set equivalent to N is said denumerable (or enumerable).
A set that is either finite or denumerable is said to be countable.
Any set that is not countable is called uncountable. ¢

114 \We denote by N the set of all positive integer numbers.



