Chapter 1

SET THEORY*

1.1 Sets

1.1.1 Basics of Sets

Definition 1.1.1 A set is a collection of objects called the *members* (or *elements* or *points*) of the set. If X is a set and x is an element of X, we write

$x \in X$.

If X is a set and x is not an element of X, we write

$x \notin X.$ \diamond

Sometimes it is possible to specify a set by listing its members between curly brackets. For example, $\{1, 2, ..., n, ...\}$ is the set of all positive integers, $1 \in \{1,2\}, 3 \notin \{1,2\}$.

Remark 1.1.1 Notice that $\{a, b, c\} = \{c, a, b\}$.

Using the *elementary logic*, we say that, if x is an object and X is a set,

^{*} A. Maceri, Set Theory, e-ISBN 978-88-85929-59-3, © Accademica 2019

then one of the two properties

$$\begin{array}{c} x \in X \\ x \notin X \end{array}$$

is true and the other is false.

Definition 1.1.2 Let *I* be a set. If to each $i \in I$ there is assigned a set A_i , then the set $\{A_i : i \in I\}$ is called an *indexed family of sets*. In this case, *I* is called the *index set* for the family and the elements of *I* are called *indices*. \diamond

Definition 1.1.3 Let P and Q be any two property. We say that P implies Q and we write

 $P \Rightarrow Q$

if Q is true every time P is true. We say that P and Q are *equivalent* and we write

 $P \Leftrightarrow O$

if it is simultaneously

$$\begin{array}{l}P \Rightarrow Q\\Q \Rightarrow P. \end{array}$$

If x and y are the same object, we say that x and y are *equal* and we write

$$x=y$$
.

If x and y are distinct objects, we say that x and y are *distinct* and we write

 $x \neq y$.

Definition 1.1.4 Let A and B be any two sets. If each member of A

if also member of *B*, we say that *A* is a *subset* (or a *part*) of *B* (or that *A* is *contained* in *B*) or that *B contains A* and we write

$$A \subseteq B$$

or

$$B \supseteq A. \diamond$$

Definition 1.1.5 Let A and B be any two sets. If A and B have precisely the same members, we say that A is *equal* to B and we write

 $A = B_{\cdot} \diamond$

Obviously

$$(A = B) \Leftrightarrow (A \subseteq B \text{ and } B \subseteq A).$$

Definition 1.1.6 If $A \subseteq B$ and $A \neq B$ we say that A is a proper subset of B and we write $A \subset B$ or $B \supset A$.

Definition 1.1.7 The set containing no elements at all is called the *void set* (or *empty set*) and is denoted by the symbol \emptyset . \diamond

The set \emptyset is clearly a subset of every set.

1.1.2 Operations on Sets

Definition 1.1.8 Let A and B be given sets. We call *union* of A and B, and denote by $A \cup B$, the set consisting of all elements which belong to at least one of the sets A and B. In symbols

$$A \cup B = \{x \colon x \in A \text{ or } x \in B\}. \diamond$$

For example, we have $\{1,2\} \cup \{2,3\} = \{1,2,3\}$.

Definition 1.1.9 We call *union* of the indexed family of sets $\{A_i: i \in I\}$, and denote by $\bigcup_{i \in I} A_i$, the set consisting of all elements which belong to at least one of the sets A_i .

Definition 1.1.10 Let A and B be given sets. We call *intersection* of A and B, and denote by $A \cap B$, the set consisting of all elements which belong to both A and B. In symbols

$$A \cap B = \{x \colon x \in A \text{ and } x \in B\}. \diamond$$

For example, we have $\{1,2\} \cup \{1,2,3\} = \{1,2\}$.

Definition 1.1.11 We call *intersection* of the indexed family of sets $\{A_i: i \in I\}$, and denote by $\bigcap_{i \in I} A_i$, the set consisting of all elements which belong to every one of the sets A_i .

From the above definitions it immediately follows that the operations \cup and \cap are *commutative*, i.e., that

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A,$$

associative, i.e., that

$$(A \cup B) \cup C = A \cup (B \cup C)$$
$$(A \cap B) \cap C = A \cap (B \cap C)$$

and obey the following distributive laws

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C).$$

Definition 1.1.12 Let A and B be given sets. We say that A and B are disjoint if they have no elements in common, i.e., if

$$A \cap B = \emptyset$$
. \diamond

Definition 1.1.13 Let \mathcal{F} be a family of sets such that $A \cap B = \emptyset$ for every pair of sets A, B in \mathcal{F} . Then the sets in \mathcal{F} are said to be *pairwise* disjoint. \diamond

Let X be given set, A a subset of X. We call Definition 1.1.14 *complement* of A and denote by A^c (or by X - A) the set of all elements of X which do not belong to A. \diamond

Let *X* be a given set, $\{A_i : i \in I\}$ an indexed family of *Remark* 1.1.2 subset of X. We easily verify that $\bigcup_{i \in I} A_i$ and $\bigcap_{i \in I} A_i$ are both subset of X. ٥

Remark 1.1.3 Let A, B, C be any sets. We easily verify that

> $A \cup A = A$ $A \cap A = A$ $A \cup \emptyset = A$ $A \cap \emptyset = \emptyset$ $A \subset A \cup B$ $A \cap B \subset A.$

Theorem 1.1.1 [De Morgan's Laws] Let X be given set, $\{A_i: i \in I\}$ an indexed family of subset of X. It results

 $(\bigcup_{i \in I} A_i)^c = \bigcap_{i \in I} (A_i)^c$ $(\bigcap_{i \in I} A_i)^c = \bigcup_{i \in I} (A_i)^c.$ (1.1.1)

(1.1.2)
$$(\bigcap_{i \in I} A_i)^c = \bigcup_{i \in I} (A_i)^c$$

Proof. To prove (1.1.1), suppose $x \in (\bigcup_{i \in I} A_i)^c$, i.e., x does not belong to any of the sets A_i . It follows that x belongs to each of the complements $(A_i)^c$ and hence $x \in \bigcap_{i \in I} (A_i)^c$. Thus $(\bigcup_{i \in I} A_i)^c \subseteq \bigcap_{i \in I} (A_i)^c$.

Conversely, suppose $x \in \bigcap_{i \in I} (A_i)^c$, so that x belongs to every set $(A_i)^c$, i.e., x does not belong to any of the sets A_i . Hence x does not belong to the union $\bigcup_{i \in I} A_i$, and then $x \in (\bigcup_{i \in I} A_i)^c$. Thus $\bigcap_{i \in I} (A_i)^c \subseteq (\bigcup_{i \in I} A_i)^c$. This proves (1.1.1).

The (1.1.2) can be proved similarly. \diamond

Definition 1.1.15 Let *B* be a given set, *A* be a subset of *B*. We call *cover* of *A* any indexed family $\{A_i : i \in I\}$ of subset of *B* such that

$$A \subseteq \bigcup_{i \in I} A_i \ . \ \diamond$$

Definition 1.1.16 Let X be a given set. Any family $\{X_i : i \in I\}$ of pairwise disjoint subset of X such that

$$\bigcup_{i \in I} X_i = X$$

is called a *partition* (or *decomposition*) of X. \diamond

Definition 1.1.17 Let X and Y be given sets. We call $Cartesian^{1.1.1}$ product of X and Y the set ^{1.1.2}

$$X \times Y = \{(x, y) \colon x \in X, y \in Y\}.$$

Every element (x, y) of $X \times Y$ is called *ordered pair*, where x is called the *first coordinate* of (x, y) and y is called the *second coordinate* of (x, y).

Remark 1.1.4 If (x, y) and (a, b) are two ordered pairs, we write

^{1.1.1} To honor René Descartes, La Haye (French) 1506 -. Stockholm 1650.

^{1.1.2} The symbol ": " means "such that".

(x, y) = (a, b) if and only if x = a and y = b. Thus $(1,5) \neq (5,1)$ while $\{1,5\} = \{5,1\}$.

Definition 1.1.18 Let *n* be a positive integer number and $X_1, ..., X_n$ be *n* sets. We call *Cartesian product of* $X_1, ..., X_n$ the set

$$X_1 \times ... \times X_n = \{ x = (x_1, ..., x_n) : x_i \in X_i \ \forall i \in \{1, ..., n\} \}.$$

We call, $\forall i \in \{1, ..., n\}$, the point $x_i \in X_i$ the *i*th *coordinate* of the *ordered* n tuple $(x_1, ..., x_n) \in X_1 \times ... \times X_n$.

1.1.3 Relations

Definition 1.1.19 Let X be a set. Any subset R of $X \times X$ is called a (binary) relation on X. If $(x, y) \in R$ we say that R is verified by the ordered pair (x, y) and we write

x R y. \diamond

Definition 1.1.20 Let X be a set, R be a relation on X. We call domain of R the set $^{1.1.3}$

dom
$$R = \{x \in X : \exists (x, y) \in R\}.$$

We call *range* of *R* the set

$$\operatorname{rng} R = \{ y \in X : \exists (x, y) \in R \}. \diamond$$

^{1.1.3} The symbol " \exists " means "it exists".

Definition 1.1.21 Let R be a relation on X. We say that R is reflexive if $\forall x \in \text{dom } R$

(1.1.3) x R x,

symmetric if

 $(1.1.4) x R y \Rightarrow y R x,$

antisymmetric if

(1.1.5) $(x R y \text{ and } y R x) \Rightarrow (x = y),$

transitive if

(1.1.6) $(x R y \text{ and } y R z) \Rightarrow (x R z). \diamond$

Definition 1.1.22 Let R be a relation on X such that dom R = X. We say that R is an equivalence relation on X if it is reflexive, symmetric and transitive. \diamond

If R is an equivalence relation on X, the element x R y is often denoted $x \equiv y$ and we say that x is *equivalent* to y by R.

Definition 1.1.23 Let *R* be an equivalence relation on *X* and $x \in X$. The set

$$R_x = \{ y \in X : y \equiv x \}$$

is called *equivalence class of X containing x.* •

We also say that R_x is *represented* by any one of its elements. Besides, if $y \in R_x$, y is said a *representative* of R_x . It is easy to check that the family

(1.1.7)
$$\frac{X}{R_x} = \{R_x : x \in X\}$$

of all such equivalence classes is a family of nonvoid pairwise disjoint sets and its union is X and then is a partition of X.

Definition 1.1.24 The partition (1.1.7) of X is called *quotient set of* X. \diamond

Definition 1.1.25 Let R be a relation on X such that dom R = X. We say that R is a partial order on X if it is reflexive, antisymmetric and transitive. If R is a partial order on X, we usually write $a \le b$ or $b \ge a$ instead a R b.

Definition 1.1.26 The notation a < b (or b > a) indicates that $a \le b$ and $a \ne b$.

Definition 1.1.27 If X is a set provided with a partial order, we say that X is a *partially ordered set.* \diamond

Definition 1.1.28 We say that X is an ordered set (or a totally ordered set) if

(1.1.8) *X* is a partially ordered set,

(1.1.9) $\forall x, y, z \in X$ one and only one of the statements

 $x < y, \qquad x = y, \qquad y < x$

is true (trichotomy property). •

Definition 1.1.29 Let X be an ordered set, and $Y \subseteq X$. If there exists a $\beta \in X$ such that $x \leq y$ for every $x \in Y$, we say that Y is *bounded above*,

and call β an *upper bound* for *Y*. \diamond

Definition 1.1.30 Let X be an ordered set, and $Y \subseteq X$. If there exists an $\alpha \in X$ such that $\alpha \leq x$ for every $x \in Y$, we say that Y is *bounded below*, and call α a *lower bound* for Y.

Definition 1.1.31 Let *X* be an ordered set, and $Y \subseteq X$. If *Y* has both an upper bound and a lower bound, then we say that *Y* is *bounded*.

Definition 1.1.32 Let X be an ordered set, and $Y \subseteq X$. By a *maximum* of Y we mean an element of Y, denoted max Y, such that max Y is an upper bound for Y. \diamond

Remark 1.1.5 Let X be an ordered set, and $Y \subseteq X$. It is clear that Y can have at most one maximum. \diamond

Definition 1.1.33 Let X be an ordered set, and $Y \subseteq X$. By a *minimum* of Y we mean an element of Y, denoted min Y, such that min Y is a lower bound for Y. \diamond

Remark 1.1.6 Let X be an ordered set, and $Y \subseteq X$. It is clear that Y can have at most one minimum. \diamond

Definition 1.1.34 Let X be an ordered set, $Y \subseteq X$, $Y \neq \emptyset$. We say that X has the *least-upper-bound property* if there exists an element of X, called *supremum* (or *least upper bound*) of Y, and denoted

sup *Y*,

such that

(1.1.10) sup Y is an upper bound for Y, (1.1.11) if γ is any upper bound for Y, then sup $Y \leq \gamma$. *Remark 1.1.7* Let X be an ordered set, and $Y \subseteq X$. We underline that if $\alpha = \sup Y$ exists, then α may or may not be a member of Y. Furthermore, we underline that, if Y has the least-upper-bound property, denoting B the set of the upper bounds of Y, it results

$$\sup Y = \min B. \diamond$$

Remark 1.1.8 Let X be an ordered set, and $Y \subseteq X$. It is clear that Y can have at most one supremum. \diamond

Definition 1.1.35 Let X be an ordered set, $Y \subseteq X$, $Y \neq \emptyset$. We say that X has the *greatest-lower-bound property* if there exists an element of X, called *infimum* (or *greatest lower bound*) of Y, and denoted

$\inf Y$,

such that

(1.1.12) inf Y is a lower bound for Y, (1.1.13) if δ is a lower bound for Y, then $\inf Y \ge \delta$.

Remark 1.1.9 Let *X* be an ordered set, and $Y \subseteq X$. We underline that if $\alpha = \inf Y$ exists, then α may or may not be a member of *Y*. Furthermore, we underline that, if *Y* has the greatest-lower-bound property, denoting *A* the set of the lower bounds of *Y*, it results

$$\inf Y = \max A. \diamond$$

Remark 1.1.10 Let X be an ordered set, and $Y \subseteq X$. It is clear that Y can have at most one infimum. \diamond

Theorem 1.1.2 Suppose X is an ordered set with the least-upperbound property, $Y \subseteq X$, Y is not empty, and Y is bounded below. Let A be the set of all lower bounds of Y. Then

$$\alpha = \max A$$

exists in X, and $\alpha = \inf Y$.

Proof. Obviously $A \subseteq X$. Moreover, since *Y* is bounded below, *A* is not empty. Since $A = \{y \in X : y \le x \ \forall x \in Y\}$, every $x \in Y$ is an upper bound of *A*, hence *A* is bounded above. By hypothesis, *X* has the least-upper-bound property. Hence $\exists \alpha \in X : \alpha = \sup A$. Since $\alpha = \sup A$, we have that α is greater or equal than every upper bound

of *A*. So, if $\mu < \alpha$ then μ is not an upper bound of *A*, hence $\mu \notin Y$. In fact, we have already seen that every member of *Y* is an upper bound of *A*. It follows that, for every $y \in Y$, we have $\alpha \le y$. Thus $\alpha \in A$. Hence $\alpha = \max A$, hence $\alpha = \inf Y$.

Remark 1.1.11 Theorem 1.1.2 show that that every ordered set with the least-upper-bound property also has the greatest-lower-bound property.

1.1.4 Functions

Definition 1.1.36 Let X and Y be sets, X' be a subset of X. A rule f associating a unique $y \in Y$ with each $x \in X'$ is called a (*single-valued*) function from X' into Y. The set X' is called the *domain (of definition)* of f and is denoted by dom f. The unique element y of Y (associated by f with the element x of X'), is called the *value of f at x* (or the *image of x under f*) and denoted by f(x). We say that f maps X into Y and we write

$$f: X \to Y$$

or

$$f: x \in X' \subseteq X \to f(x) \in Y.$$

The set $\{f(x) \in Y : x \in X'\}$ is called the *range* of f (or *image* of X') and is denoted f(X') or rng f.

Remark 1.1.12 Obviously $f(X') \subseteq Y$ and in general an element of f(X') is the value of f at several elements of X'.

Definition 1.1.37 If dom f = X and f(X') = Y we say that f is a function from X onto Y. \diamond

Remark 1.1.13 A function is also called *single-valued relation* or *mapping* or *transformation* or *operation* or *correspondence* or *application*.

Definition 1.1.38 Let f be a function that maps $X' \subseteq X$ into Y. If

$$\forall x, z \in X' \qquad x \neq z \Rightarrow f(x) \neq f(z),$$

we say that f is a *reversible* function. \diamond

Remark 1.1.14 Let $f: X' \subseteq X \to Y$ be any reversible function. Obviously $\forall y \in \operatorname{rng} f$ there exists one and only one $x \in X'$ such that f(x) = y.

Definition 1.1.39 Let f be a function that maps $X' \subseteq X$ into Y. If f is a reversible function, the (single-valued) function f^{-1}

 $\forall y \in \operatorname{rng} f \to \operatorname{the unique} x \in X'$ such that f(x) = y

is called the *inverse* of f. \diamond

Remark 1.1.15 If $f: X' \subseteq X \to Y$ is a reversible function, obviously $dom f^{-1} = rng f$ and $rng f^{-1} = dom f$.

Definition 1.1.40 Let f be a function that maps X onto Y. If f is a reversible function, we say that f is a *one to one* (or *biunique*) correspondence from X onto Y.

Thus, to say that f is a one to one (or biunique) correspondence from X onto Y simply means that each element of Y is the correspondent (by f) of one and only one element of X and each element of X is the correspondent (by f^{-1}) of one and only one element of Y.

Definition 1.1.41 If $f: X \to Y$ is a function and $A \subset X$, we define the *restriction of* f to A to be the function $f_A : A \to Y$ such that

$$x \in A \rightarrow f_A(x) = f(x) \in Y.$$

Remark 1.1.16 Usually the restriction f_A of f to A is denoted by the same symbol f of the function. \diamond

Definition 1.1.42 If $f: X \to Y$ is a function and $X \subset B$, we define the *extension of* f to B to be the function $f_B : B \to Y$ such that

$$x \in X \rightarrow f_B(x) = f(x) \in Y.$$

Remark 1.1.17 Usually the extension f_B of f to B is denoted by the same symbol f of the function. \diamond

Definition 1.1.43 Let $f: X \to Y$ and $g: Y \to Z$ be any functions. We define the *composite* function $g \circ f$ to be the function

$$x \in X \rightarrow g \circ f(x) = g(f(x)) \in Y.$$

Definition 1.1.44 Let X be any set and A be any subset of X. The function χ_A with domain X and range contained in $\{0,1\}$ such that

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \in X - A, \end{cases}$$

is called the *characteristic function of A*. •

Remark 1.1.18 The characteristic functions are very useful in the *Mathematical Analysis.* \diamond

Definition 1.1.45 A sequence is a function having N^{1.1.4} as its domain. If x is a sequence, we will write x_n instead of x(n) for the value of x at n. The value x_n is called the n^{th} term of the sequence. The sequence x whose n^{th} term is x_n will be denoted by

$$x_1, ..., x_n, ...$$

or simply

 $\{x_n\}.$

If Y is a set and if $x_n \in Y \quad \forall n \in \mathbb{N}$, then $\{x_n\}$ is said to be a sequence in Y, or a sequence of elements of Y. \diamond

Definition 1.1.46 Two sets A and B are said *equivalent* if there exists some one-to-one function from A onto B. \diamond

Definition 1.1.47 A set X is said finite if either $X = \emptyset$ or else exists some $n \in \mathbb{N}$ such that X is equivalent to $\{j \in \mathbb{N} : 1 \le j \le n\}$. All sets that are not finite are said to be *infinite*. A set equivalent to \mathbb{N} is said *denumerable* (or *enumerable*). A set that is either finite or denumerable is said to be *countable*. Any set that is not countable is called uncountable.

SETS

 $^{^{1.1.4}}$ We denote by $\,\mathbb N\,$ the set of all positive integer numbers.